Jenis Media transmisi Pada Jaringan Komputer

Wednesday, April 10, 2013



Jenis Media transmisi Pada Jaringan Komputer
Pertama-tama apa sih yang dimaksud dengan ” media transmisi ” ??? media transmisi itu ialah suatu media yang bisa mentransmisikan data data media transmisi pada jaringan komputer itu ada 3 jenis :
1. Copper Media atau sering dikenal dengan media tembaga
2. Optical Media atau lebih gaulnya Media Optik
3. Wireless Media atau lebih ngartisnya Media tanpa menggunakan kabel

Copper Media ( Media Tembaga )
Copper Media ialah media transmisi yang terbuat dari bahan tembaga, nah kalo istilah gaulnya sih disebut dengan  ” Kabel “ . Nah data yang dikirim lewat kabel ini bentuknya berupa sinyal sinyal listrik ( tegangan atau arus ), nah berikut ialah jenis jenis kabel yang digunakan dalam jaringan komputer :
1. koaksial
2. STP
3. UTP
Kabel Koaksial
Kabel ini sering digunakan sebagai kabel antena TV. Disebut juga sebagai kabel BNC (Bayonet Naur Connector). Kabel ini
merupakan kabel yang paling banyak digunakan pada LAN, karena memiliki perlindungan terhadap derau yang lebih tinggi, murah, dan mampu mengirimkan data dengan kecepatan standar .Ada 2 jenis yaitu RG-58 (10Base2) dan RG-8 (10Base5 ). Ada 3 jenis konektor pada kabel Coaxial, yaitu T konektor, I konektor (socket) dan BNC konektor.
Keuntungan menggunakan kabel koaksial adalah :
·         murah dan jarak
·         jangkauannya cukup jauh.
Kekurangannya adalah :
·         susah pada saat instalasi.
·         Untuk saat ini kabel koaksial sudah tidak direkomendasikan lagi intuk instalasi jaringan
nah berikut contoh gambar dari kabel koaksial :




Kabel Twisted Pair

nah twister pair ini ada dua keluarga brewww, pertama STP dan kedua ialah UTP. Yang ngebedainnya cuma yang STP ada pelindungnya buat biar ga interferensi satu lagi ga ada pelindungnya jadi agak rentan. yuk kita bahas aja kelebihan dan kekurangannya masing-masing
STP ( Shield Twisted Pair )
Keuntungan menggunakan kabel STP adalah lebih tahan terhadap interferensi gelombang elektromagnetik baik dari dari dalam maupun dari luar. Kekurangannya adalah mahal, susah pada saat instalasi (terutama masalah grounding), dan jarak jangkauannya hanya 100m
berikut gambarnya :






UTP ( UnShielded Twister Pair )
Keuntungan menggunakan kabel UTP adalah murah dan mudah diinstalasi. Kekurangannya adalah rentan terhadap interferensi gelombang elektromagnetik, dan jarak jangkauannya hanya 100m


Perbedaanya Cuma pada perlindunganya saja

Ada beberapa kategori untuk kabel Twisted Pair, yaitu :
Kategori 1 (Cat-1).
Umumnya menggunakan konduktor padat standar AWG sebanyak 22 atau 24 pin dengan range impedansi yang lebar. Digunakan pada koneksi telepon dan tidak direkomendasikan untuk transmisi data.
Kategori 2 (Cat-2).
Range impedansi yang lebar, sering digunakan pada sistem PBX dan sistem Alarm. Transmisi data ISDN menggunakan
kabel kategori 2, dengan bandwidth maksimum 1 MBps.
Kategori 3 (Cat-3).
Sering disebut kabel voice grade, menggunakan konduktor padat sebanyak 22 atau 24 pin dengan impedansi 100 Ω dan
berfungsi hingga 16 MBps. Dapat digunakan untuk jaringan 10BaseT dan Token Ring dengan bandwidth 4 Mbps.
Kategori 4 (Cat-4).
Seperti kategori 3 dengan bandwidth 20 MBps, diterapkan pada jaringan Token Ring dengan bandwidth 16 Mbps.
Kategori 5 (Cat-5).
Merupakan kabel Twisted Pair terbaik (data grade) dengan bandwidth 100 Mbps dan jangkauan transmisi maksimum 100 m. Media lain pendukung kabel UTP antara lain Crimp Tool dan connector RJ-45.. Crimp tool / Crimping tool adalah alat untuk
memasang kabel UTP ke konektor RJ-45 / RJ-11 tergantung kebutuhan. Bentuknya macam – macam ada yang besar dengan fungsi yang banyak, seperti bisa memotong kabel, mengupas dan lain sebagainya. Ada juga yang hanya diperuntukan untuk crimp RJ-45 atau RJ-11 saja.



Optical Media
Ada tiga jenis kabel fiber optic yang biasanya digunakan, yaitu single mode, multi mode dan plastic optical fiber yang berfungsi
sebagai petunjuk cahaya dari ujung kabel ke ujung kabel lainnya. Dari transmitter^ receiver, yang mengubah pulsa elektronik ke cahaya dan sebaliknya, dalam bentuk light-emitting diode ataupun laser. Kabel fiber optic single mode merupakan fiber glass tunggal dengan diameter 8.3 sampai 10 mikrometer, memiliki satu jenis transmisi yang dapat mengantarkan data berkapasitas besar dengan kecepatan tinggi untuk jarak jauh, dan membutuhkan sumber cahaya dengan lebar spektrum yang lebih kecil. Kemampuan kabel jenis single mode dalam mengantarkan transmisi adalah 50 kali lebih cepat dari kabel jenis multimode, karena memiliki core yang lebih kecil sehingga dapat menghilangkan setiap distorsi dan pulsa cahaya yang tumpang tindih.
Kabel fiber optic multimode terbuat dari fiberglass dengan diameter lebih besar, yaitu 50 sampai dengan 100 mikrometer yang dapat mengantarkan data berkapasitas besar dengan kecepatan tinggi untuk jarak menengah. Apabila jarak yang ditempuh lebih dari 3000 kaki, akan terjadi distorsi sinyal pada sisi penerima yang mengakibatkan transmisi data menjadi tidak akurat.
Sedang plastic optical’fiber adalah kabel berbasis plastik terbaru yang menjamin tingkat performa yang sama dengan fiber glass dalam jarak pendek dengan biaya yang jauh lebih murah. Saat ini, fiber optic telah digunakan sebagai standar kabel data dalam biding physical layer telekomunikasi atau jaringan, seperti perangkat TV kabel, juga sistem keamanan yang menggunakan Closed Circuit Television (CCTV), dan lain sebagainya Bahan dasar dari optical media adalah kaca dengan ukuran yang sangat kecil (skala mikron).Biasanya dikenal dengan nama fibreoptic (serat optic).Data yang dilewatkan pada medium ini dalam bentuk cahaya (laser atau inframerah)
Satu buah kabel fibre optic terdiri atas dua fiber,satu berfungsi untuk Transmit (Tx) dan satunya untuk Receive (Rx) sehingga komunikasi dengan fibre optic bisa terjadi dua arah secara bersama-sama (full duplex).
  • ST Konektor biasanya dipakai untuk yang singlemode
  • SC konektor biasanya dipakai untuk yang multimode
Berikut gambarnya :






Wireless Media ( Media Tanpa Kabel )
Saat ini sudah banyak digunakan jaringan tanpa kabel (wireless network), transmisi data menggunakan sinar infra merah atau gelombang mikro untuk menghantarkan data. Walaupun kedengarannya praktis, namun kendala yang dihadapi disini adalah masalah jarak,bandwidth, dan mahalnya biaya. Namun demikian untuk kebutuhan LAN di dalam gedung, saat ini sudah  dikembangkan teknologi wireless untuk Active Hub (Wireless Access Point) dan Wireless LAN Card (pengganti NIC), sehingga bisa mengurangi semrawutnya kabel transmisi data pada jaringan komputer. Wireless Access Point juga bisa digabungkan (up-link) dengan ActiveHub dari jaringan yang sudah ada. Media transmisi wireless menggunakan gelombang radio frekuensi tinggi. Biasanya gelombang elektromagnetik dengan frekuensi 2.4 Ghz dan 5 Ghz. Data-data digital yang dikirim
melalui wireless ini akan dimodulasikan ke dalam gelombang elektromagnetik ini.
Gambar  alatnya:




nama   : agung wahyu s.a
nim      :115514259
sumber: http://nopainsocounterpain.wordpress.com/2012/03/28/jenis-media-transmisi-pada-jaringan-komputer/

Teknologi GSM

Thursday, April 4, 2013


 

Global System for Mobile Communications





Struktur jaringan GSM
Global System for Mobile Communication (GSM mulanya singkatan dari Groupe Spécial Mobile) adalah sebuah teknologi komunikasi selular yang bersifat digital. Teknologi GSM banyak diterapkan pada komunikasi bergerak, khususnya telepon genggam. Teknologi ini memanfaatkangelombang mikro dan pengiriman sinyal yang dibagi berdasarkan waktu, sehingga sinyal informasi yang dikirim akan sampai pada tujuan. GSM dijadikan standar global untuk komunikasi selular sekaligus sebagai teknologi selular yang paling banyak digunakan orang di seluruh dunia.


Sejarah dan perkembangan :

Teknologi komunikasi selular sebenarnya sudah berkembang dan banyak digunakan pada awal tahun 1980-an, diantaranya sistem C-NET yang dikembangkan di Jerman dan Portugal oleh Siemens, sistem RC-2000 yang dikembangkan di Perancis, sistem NMT yang dikembangkan di Belanda danSkandinavia oleh Ericsson, serta sistem TACS yang beroperasi di Inggris. Namun teknologinya yang masih analog membuat sistem yang digunakan bersifat regional sehingga sistem antara negara satu dengan yang lain tidak saling kompatibel dan menyebabkan mobilitas pengguna terbatas pada suatu area sistem teknologi tertentu saja (tidak bisa melakukan roaming antar negara).
Teknologi analog yang berkembang, semakin tidak sesuai dengan perkembangan masyarakat Eropa yang semakin dinamis, maka untuk mengatasi keterbatasannya, negara-negara Eropa membentuk sebuah organisasi pada tahun 1982 yang bertujuan untuk menentukan standar-standar komunikasi selular yang dapat digunakan di semua negara Eropa. Organisasi ini dinamakan Group Special Mobile (GSM). Organisasi ini memelopori munculnya teknologi digital selular yang kemudian dikenal dengan nama Global System for Mobile Communication atau GSM.
GSM muncul pada pertengahan 1991 dan akhirnya dijadikan standar telekomunikasi selular untuk seluruh Eropa oleh ETSI (European Telecomunication Standard Institute). Pengoperasian GSM secara komersil baru dapat dimulai pada awal kuartal terakhir 1992 karena GSM merupakan teknologi yang kompleks dan butuh pengkajian yang mendalam untuk bisa dijadikan standar. PadaSeptember 1992, standar type approval untuk handphone disepakati dengan mempertimbangkan dan memasukkan puluhan item pengujian dalam memproduksi GSM.
Pada awal pengoperasiannya, GSM telah mengantisipasi perkembangan jumlah penggunanya yang sangat pesat dan arah pelayanan per area yang tinggi, sehingga arah perkembangan teknologi GSM adalah DCS (Digital Cellular System) pada alokasi frekuensi 1800 Mhz. Dengan frekuensi tersebut, akan dicapai kapasitas pelanggan yang semakin besar per satuan sel. Selain itu, dengan luas sel yang semakin kecil akan dapat menurunkan kekuatan daya pancar handphone, sehingga bahaya radiasi yang timbul terhadap organ kepala akan dapat di kurangi. Pemakaian GSM kemudian meluas ke Asia dan Amerika, termasuk Indonesia. Indonesia awalnya menggunakan sistem telepon selular analog yang bernama AMPS (Advances Mobile Phone System) danNMT (Nordic Mobile Telephone). Namun dengan hadir dan dijadikannnya standar sistem komunikasi selular membuat sistem analog perlahan menghilang, tidak hanya di Indonesia, tapi juga diEropa. Pengguna GSM pun semakin lama semakin bertambah. Pada akhir tahun 2005, pelanggan GSM di dunia telah mencapai 1,5 triliun pelanggan. Akhirnya GSM tumbuh dan berkembang sebagai sistem telekomunikasi seluler yang paling banyak digunakan di seluruh dunia.

Spesifikasi Teknis 
Di Eropa, pada awalnya GSM didesain untuk beroperasi pada frekuensi 900 Mhz. Pada frekuensi ini, frekuensi uplinks-nya digunakan frekuensi 890–915 MHz , sedangkan frekuensi downlinksnyamenggunakan frekuensi 935–960 MHz. Bandwith yang digunakan adalah 25 Mhz (915–890 = 960–935 = 25 Mhz), dan lebar kanal sebesar 200 Khz. Dari keduanya, maka didapatkan 125 kanal, dimana 124 kanal digunakan untuk suara dan satu kanal untuk sinyal. Pada perkembangannya, jumlah kanal 124 semakin tidak mencukupi dalam pemenuhan kebutuhan yang disebabkan pesatnya pertambahan jumlah pengguna. Untuk memenuhi kebutuhan kanal yang lebih banyak, maka regulator GSM di Eropa mencoba menggunakan tambahan frekuensi untuk GSM pada band frekuensi di range 1800 Mhz dengan frekuensi 1710-1785 Mhz sebagai frekuensi uplinks dan frekuensi 1805-1880 Mhz sebagai frekuensi downlinks. GSM dengan frekuensinya yang baru ini kemudian dikenal dengan sebutan GSM 1800, yang menyediakan bandwidth sebesar 75 Mhz (1880-1805 = 1785–1710 = 75 Mhz). Dengan lebar kanal yang tetap sama yaitu 200 Khz sama, pada saat GSM pada frekuensi 900 Mhz, maka pada GSM 1800 ini akan tersedia sebanyak 375 kanal. Di Eropa, standar-standar GSM kemudian juga digunakan untuk komunikasi railway, yang kemudian dikenal dengan nama GSM-R.

Arsitektur Jaringan
Secara umum, network element dalam arsitektur jaringan GSM dapat dibagi menjadi:
1.     Mobile Station (MS)
2.     Base Station Sub-system (BSS)
3.     Network Sub-system (NSS),
4.     Operation and Support System (OSS)
Secara bersama-sama, keseluruhan network element di atas akan membentuk sebuah PLMN (Public Land Mobile Network).
  
Mobile Station (MS) merupakan perangkat yang digunakan oleh pelanggan untuk melakukan pembicaraan. Terdiri atas:
·         Mobile Equipment (ME) atau handset, merupakan perangkat GSM yang berada di sisi pengguna atau pelanggan yang berfungsi sebagai terminal transceiver (pengirim dan penerima sinyal) untuk berkomunikasi dengan perangkat GSM lainnya.
·         Subscriber Identity Module (SIM) atau SIM Card, merupakan kartu yang berisi seluruh informasi pelanggan dan beberapa informasi pelayanan. ME tidak akan dapat digunakan tanpa SIM didalamnya, kecuali untuk panggilan darurat. Data yang disimpan dalam SIM secara umum, adalah:
1.     IMMSI (International Mobile Subscriber Identity), merupakan penomoran pelanggan.
2.     MSISDN (Mobile Subscriber ISDN), nomor yang merupakan nomor panggil pelanggan.
Base Station System (BSS), terdiri atas:
·         BTS Base Transceiver Station, perangkat GSM yang berhubungan langsung dengan MS dan berfungsi sebagai pengirim sinyal.
·         BSC Base Station Controller, perangkat yang mengontrol kerja BTS-BTS yang berada di bawahnya dan sebagai penghubung BTS dan MSC
Network Sub System (NSS), terdiri atas:
·         Mobile Switching Center atau MSC, merupakan sebuah network element central dalam sebuah jaringan GSM. MSC sebagai inti dari jaringan seluler, dimana MSC berperan untuk interkoneksi hubungan pembicaraan, baik antar selular maupun dengan jaringan kabel PSTN, ataupun dengan jaringan data.
·         Home Location Register atau HLR, yang berfungsi sebagai sebuah database untuk menyimpan semua data dan informasi mengenai pelanggan agar tersimpan secara permanen.
·         Visitor Location Register atau VLR, yang berfungsi untuk menyimpan data dan informasi pelanggan.
·         Authentication Center atau AuC, yang diperlukan untuk menyimpan semua data yang dibutuhkan untuk memeriksa keabsahaan pelanggan. Sehingga pembicaraan pelanggan yang tidak sah dapat dihindarkan.
·         Equipment Identity Registration atau EIR, yang memuat data-data pelanggan.


Operation and Support System (OSS), merupakan sub sistem jaringan GSM yang berfungsi sebagai pusat pengendalian, diantaranya fault management, configuration management, performance management, dan inventory management.
Frekuensi pada 3 Operator Terbesar di Indonesia
1.     Indosat: 890 – 900 Mhz (10 Mhz)
2.     Telkomsel: 900 – 907,5 Mhz (7,5 Mhz)
3.     Excelcomindo: 907,5 – 915 Mhz (7,5 Mhz)

Keunggulan Teknologi Generasi ke - 2 (2G)
GSM, sebagai sistem telekomunikasi selular digital memiliki keunggulan yang jauh lebih banyak dibanding sistem analog, di antaranya:
·         Kapasitas sistem lebih besar, karena menggunakan teknologi digital di mana penggunaan sebuah kanal tidak hanya diperuntukkan bagi satu pengguna saja sehingga saat pengguna tidak mengirimkan informasi, kanal dapat digunakan oleh pengguna lain.
·         Sifatnya yang sebagai standar internasional memungkinkan roaming mancanegara
·         Dengan teknologi digital, tidak hanya mengantarkan suara, tapi memungkinkan servis lain seperti teks, gambar, dan video.
·         Keamanan sistem yang lebih baik
·         Kualitas suara lebih jernih dan peka.
·         Mobile (dapat dibawa ke mana-mana)
Bagaimanapun, keunggulan GSM yang beragam pantas saja membuatnya menjadi sistem telekomunikasi selular terbesar penggunanya di seluruh dunia.

  
Jaringan GSM
Alokasi untuk untuk Hutchison (3) ada di pita 1900MHz, sampai sekarang penulis belum tau di kanal berapa Huchison bekerja.Dalam tiap operator GSM biasanya memiliki divisi Optimisasi yang bertugas untuk melakukan optimisasi jaringan GSM dengan cara mengatur pola frekuensi re-use dalam jaringan. Frekuensi re-use dalam GSM digunakan untuk menghindarkan interferensi dari dua BTS dengan frekuensi kerja yang sama. Dengan mekanisme frekuensi re-use maka interferensi bisa dihindari. Dalam teknologi GSM, pengguna jasa yang sedang melakukan pembicaraan akan diberi alokasi 1 slot kanal untuk melakukan pembicaraan. Hal ini memungkinkan kita memiliki kanal sendiri saat sedang berbicara tanpa bisa diganggu oleh pengguna lain. Namun, dengan demikian maka jumlah kanal yang tersedia akan terbatas dan berakibat jumlah pembicaraan (user) yang mampu dilayani oleh suatu BTS akan berjumlah tertentu.
Namun demikian, dalam GSM antara pengguna satu dengan lainnya tidak saling menginterferensi seperti halnya dalam komunikasi CDMA. Hal ini memberikan hasil suara yang lebih jernih dan nyaman.

Arsitektur Jaringan GSM dan CDMA

Arsitektur jaringan GSM terdiri dari 3 komponen utama yakni:
Mobile Station
Base Station Subsytem (BSS)
Network Subsytem (NSS)
  • Entitas Mobile Station terdiri dari Mobile Equipement (ME) yakni perangkat keras & perangkat lunak untuk transmisi radio yang dikenal dengan istilah telepon seluler (ponsel) dan Subcriber Identification Module (SIM).
1



  • Base Station Subsytem (BSS) terdiri dari Base Tranciever System (BTS) dan Base Station Controler (BSC). Base Station Controllers (BSC) mengontrol dan mengatur beberapa BTS. BSC bertanggung jawab untuk memelihara koneksi (hubungan radio) saat panggilan dan kepadatan lalu lintas panggilan pada areanya dan meneruskannya ke Network Subsystem.
1

  • Network Subsystem terdiri dari Mobile Switvhing Centres (MSC) dan beberapa database yang terhubung dengannya seperi Home Location Register (HLR), Visitor Location Register (VLR), Authentication Center (AuC) serta Equipment Identity Register (EIR). Mobile Switching Centers (MSC) berfungsi untuk switching suatu panggilan telepon dari jaringan internal atau dari jaringan lain (eksternal), call routing untuk pelanggan yang melakukan roaming (roaming subscriber), menyimpan informasi billingserta data base lain yang berisi informasi subscriber ID (IMSI), nomor ponsel pelanggan, beberapa layanan atau larangan yang berkaitan dengan pelanggan, autentifikasi serta informasi lokasi pelanggan.



Setiap ponsel berkomunikasi dengan BTS terdekat yang menyediakan sejumlah channel yang dedicated disediakan untuk melayani beberapa ponsel pada saat yang bersamaan sekaligus (multiplexing). Setiap transmisi suara oleh suatu ponsel dilakukan melalui single dedicated channel.


1

 Saat pelanggan mengaktifkan ponselnya, pada waktu yang bersamaan pesan dikirimkan pada database pada Network Subsystem melalui BTS, BSC dan MSC. Informasi pada SIM card yang dikirim untuk dilakukan proses autehtifikasi pada sisi Network Subsystem oleh AuC database dan bila telah mendapatkan otorisasi MSC akan mengirimkan akses ijin pada mobile station yang diikuti kode-kode jaringan pada layer LCD pada ponsel. Pesan lain yang juga dikirimkan berisi informasi dimana pelangan berada (proses Location Update). Proses ini akan diupdate dalam interval waktu yang telah ditentukan atau juga dipicu saat pelanggan meninggalkan cell (area yang dicover suatu BTS yang direpresentasikan dengan bentuk heksagon) dan memasuki cell yang lain (setelah proses handover).


 1

Saat melakukan panggilan keluar, VLR akan melakukan pemeriksaan apakah diizinkan untuk melakukan panggilan seperti panggilan international dan lain sebagainya. Saat ada penelpon lain (misal dari fixed phone-PSTN) ingin menghubungi seorang pelanggan ponsel. Langkah yang dilakukan adalah melakukan dial nomor ponsel yang dituju. Panggilan dari PSTN akan masuk ke Gateway MSC (GMSC) yang merupakan pintu gerbang antara jaringan GSM dengan jaringan lainnya. MSC menanyakan database dimana lokasi pelangan yang akan dipanggil. Setelah melakukan Location Update, informasi keberadaan pelanggan yang akan dihubungi dikirimkan ke MSC. MSC kemudian melakukan forward call ke BSC dan selanjutnya BTS dimana pelanggan yang dituju berada pada cell yang dicover BTS. Ponsel pelanggan yang dihubungi akan mulai berdering sampai koneksi terjadi saat panggilan tersebut diterima oleh pihak yang dituju.
Khusus pada jaringan GPRS (2.5 G) terdapat 2 entitas pada jeringan packet swicthingnya yakni Serving GPRS Support Node (SGSN) dan Gateway GPRS Suport Node (GGSN) pada gambar 2 dan gambar 3. SGSN berfungsi mengatur semua trafik data pada jaringan GPRS serta fungsi lainya yang berkaitan dengan autentifikasi pelangan, penyimpan informasi tarif (charging information) serta enkripsi koneksi data dengan ponsel. GGSN adalah gateway antara jaringan GPRS dengan jaringan eksternal (internet).
 
Pada jaringan GPRS (2.5 G), entitas BSS dapat diklasifikasi merupakan Radio Access Network (RAN) dan entitas Network Subsytem juga dapat juga diklasifikasi merupakan Core Network (terdiri dari oleh Circuit-Switched Domain dan Packet-Switched Domain).
Pada perkembangan GSM (2G) ini akan ditandainya dengan teknologi GSM yang enhanced mulai dari GPRS (2.5G), EDGE (2.75G) dan 3G . Perkembangan teknologi wireless dapat dilihat pada matrik berdasarkan karakteritik mobilitas/range dan kecepatan akses (data ratenya) 

Elemen jaringan dari GSM Phase ½

GSM phase ½ PLMN berisi dari 3 subsistem; base station subsystem (BSS), network dan switching subsystem (NSS), dan operations support system (OSS). BSS berisi dengan beberapa unit fungsional; base station controller (BSC), base transcevier station (BTS) dan transcoder and rate adapter unit (TRAU). NSS berisi beberapa unit fungsional; MSC, VLR, HLR, EIR, dan AC. MSC berfungsi menyediakan seoerti switching, signaling, paging, dan inter-MSC handover. OSS berisi operation dan maintenance centers (OMSs), yang digunakan untuk remote dan tugas centralized operation, administration, dan maintenance (OAM).
Elemen jaringan dari GSM Phase 2+

GPRS
Yang terpenting dari bagian evolusioner GSM menuju UMTS adalah GPRS. GPRS memperkenalkan PS kedalam GSM CN dan mengijinkan akses langsung ke packet data networks (PDNs). Transmisi PS ini memungkinkan untuk rate data tinggi dengan baik diluar batas 64 kbps dari ISDN melalui GSM CN, transmisi data rate untuk UMTS diperlukan sampai 2 Mbps. GPRS akan siapkan dan menoptimalisasi CN untuk data rate yang tinggi pada transmisi PS, seperti halnya UMTS dengan UTRAN pada RAN. Seperti itu juga, GPRS adalah suatu persyaratan untuk pengenalan UMTS.



1


Dua unit fungsional ini meluas dari arsitektur GSM NSS untuk layanan GPRS PS; GGSN dan SGSN, GGSN mempunyai fungsi membandingkan pada gateway MSC (GMSC). SGSN berada pada level hirarki yang sama sebagai visited MSC (VMSC)/VLR dan melaksanakan fungsi yang dapat diperbandingkan seperti routing dan mobility management.

CAMEL

CAMEL memungkinkan akses di seluruh dunia pada operator yang memakai aplikasi IN seperti prepaid, call screening, dan supervision. CAMEL adalah peningkatan utama GSM tahap 2+ untuk pengenalan konsep UMTS virtual home environment (VHE). VHE adalah suatu platform dari definisi layanan fleksibel (koleksi dari jasa kreasi tool) itu memungkinkan operator untuk memodifikasi atau penigkatan layanan yang sudah ada ada atau membuat layanan baru. Lagipula, VHE memungkinkan akses diseluruh dunia ke layanan spesifik operator ini dalam setiap GSM dan UMTS PLMN dan memperkenalkan layanan location-based (oleh interaksi dengan GSM/UMTS mobility management). A CSE dan suatu protokol baru dari common control signaling system 7 (SS7) (CCS7), CAMEL application part (CAP), dipergunakan pada CN untuk memperkenalkan CAMEL.


1

Secara umum General Packet Radio Service atau GPRS adalah suatu teknologi yang mungkinkan pengiriman dan penerimaan data lebih cepat jika dibandingkan dengan penggunaan teknologi Circuit Switch Data atau CSD. Jaringan GPRS merupakan jaringan terpisah dari jaringan GSM dan saat ini hanya digunakan untuk aplikasi data. Komponen-komponen utama jaringan GPRS adalah :
GGSN: gerbang penghubung jaringan GSM ke jaringan internet. SGSN: gerbang penghubung jaringan BSS/BTS ke jaringan GPRS. PCU: komponen di level BSS yang menghubungkan terminal ke jaringan GPRSSecara teori kecepatan pengiriman data GPRS dapat mencapai 115 kb/s. Namun dalam implementasinya sangat tergantung dari berbagai hal seperti :1. Konfigurasi dan Alokasi time slot di level Radio/BTS2. Teknologi software yang digunakan 3. Dukungan ponsel
Ini menjelaskan mengapa pada saat-saat tertentu, di lokasi tertentu akses GPRS terasa lambat, dan bahkan bisa lebih lambat dari akses CSD yang memiliki kecepatan 9,6 kb/s
ARSITEKTUR JARINGAN CDMA
Secara umum jaringan CDMA dibagi menjadi tiga subsistem. Ketiga subsistem itu adalah Base Station Subsystem (BSS), Network Switching System (NSS), dan Network Management Subsystem (NMS).

1. BSS
BSS (Base Station Subsystem) adalah subsistem yang terdiri dua bagian yaitu: Base Transceiver Station (BTS) dan Base Station Controller (BSC). Komunikasi antara BTS dan BSC mempergunakan protokol A-bis yang memungkinkan komunikasi antar elemen tersebut. Secara sederhana struktur dan susunan dari BSS dapat dilihat dari Gambar 1.

1
Gambar 1 Struktur pada BSS

Base Transceiver Station (BTS)
Tiap cell memiliki satu Base Transceiver Station (BTS) yang menjamin komunikasi radio antar mobile station dalam cell melalui air interface dan mobile station dengan jaringan tetap (PSTN). Fungsi utama dari BTS adalah menjaga dan memonitor koneksi ke mobile station dalam satu cell. BTS dapat mempergunakan antenna omnidirectional (ke segala arah) atau three directional (tiga arah).
1
Gambar 2 Antena BTS omnidirectional dan three directional

BTS berisi semua peralatan radio yang diperlukan untuk operasi pada sel. BTS sebagian besar terdiri dari hardware yang mempunyai fungsi, yaitu:
· Encoder, multiplexing, modulate sinyal RF (radio frequency) ke antena.
· Transcoding dan rate adaptation.
· Sinkronisasi frekuensi.
· Komunikasi suara melalui kanal speech, full rate atau half rate.
· Mengontrol frekensi hoping.
· Mendeteksi rondom access.
· Timing advance.
· Measurement uplink kanal radio.

BTS merupakan bagian yang berhubungan langsung dengan Mobile Station (MS) melalui gelombang radio. BTS disebut juga modem radio.
Base Station Controller (BSC)
BSC adalah penghubung antara sejumlah BTS dan MSC. Tiap BSC mengontrol satu BTS atau lebih. Area di mana BTS - BTS dikontrol oleh satu BSC dinamakan base station area atau BSC area.
Tugas BSC diantaranya meliputi :
· Interfacing ke arah MSC, BTS dan OMS.
· Mengendalikan BTS - BTS yang ada di bawah pengawasannya.
· Manajemen radio resource (alokasi kanal radio, radio measurement dan power kontrol).
· Mengatur proses handover.
· Menangani fungsi - fungsi Operation and Maintenance (O&M) BSS.

2. NSS
NSS (Network Switching Subsystem) merupakan subsistem yang berfungsi untuk melakukan switching bagi MS, sehingga MS dapat terhubung ke jaringan tetap (PSTN/ISDN) atau ke jaringan radio lainnya. NSS juga mengatur database (data pelanggan dan data jaringan) dan macam-macam signaling yang dipergunakan untuk membuat atau memutuskan hubungan.
NSS merupakan pusat pemrosesan yang terdiri dari empat komponen pokok yaitu : Mobile Service Switching Center (MSC), Home Location Register (HLR), Visitor Location Register (VLR), dan Authentication Center (AuC).
1
Gambar 3 Hubungan antara jaringan BSS dan NSS
Mobile Service Switching Centre (MSC)
MSC adalah sentral di PLMN yang berfungsi untuk :
· Gateway ke jaringan lain, sehingga jaringan PLMN dapat terhubung ke jaringan PSTN.
· Menghubungkan elemen - elemen jaringan NSS ke elemen - elemen jaringan BSS yangterdapat dalam satu PLMN service area. Selain mempunyai fungsi dasar yang sama dengan fungsi sentral pada jaringan tetap (PSTN), MSC mempunyai fungsi khusus yang tidak dimiliki oleh sentral tetap.

Fungsi - fungsi dasar MSC adalah:
· Melakukan pemilihan route.
· Melakukan pembentukan hubungan traffik dan signalling.
· Mengawasi hubungan komunikasi antar pelanggan yang terbentuk.
· Message accounting.
· Pengukuran traffik.
· Menangani beban lebih (overload).
· Mendukung servis telekomunikasi.

Fungsi - fungsi khusus mobile pada MSC adalah:
· Memperluas fungsi - fungsi dasar ke dalam PLMN (seperti: sel oriented routing nomer pelanggan).
· Mobility management : introgation, paging, handover dan location update.
· Akses ke data base PLMN.
· Melakukan fungsi keamanan khusus.
· Melakukan fungsi interworking (IWF) untuk pelayanan data GSM.
· Mengontrol queue operation dengan tingkatan prioritas untuk BSS.

 Nama : Lila Listiyani Oktafulana
 NIM  : 115514053
Kelas  : ELKOM 1 2011

Refrensi :